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Abstract 

Homological algebra is used to derive some results in the theory  of  Lie groups.  

1. Introduction 

The states of a quantum mechanical system form a projective Hilbert space. 
If the physical system admits a symmetry group, it induces automorphisms in 
the quantum space, i.e., a projective representation of the group. In this note 
we remark on this mathematical problem, using a minimum of modern homo- 
logical algebra. 

The problem as such was recognised early by Weyl (1950); Wigner (1939) 
studied the case for the Poincar~ group, and Bargmann (1954) solved the 
situation for nearly a general Lie group, including the Galilei group; on the 
mathematical side Mackey (1958) initiated the work for any locally compact 
second-countable groups; for a self-contained exposition the book of 
Varadarajan (1968) should be consulted. 

In Section 2 we set up the equivalence of the projective representation 
problem with a specific extension problem. Some simple results follow at 
once; the connexion of Lie group extension with Lie algebra extension is then 
used to obtain other results with Lie symmetry; in Section 3 the relation of 
the Galilei group with Heisenberg commutation rules is discussed. 

As the paper is intended for physicists, modern but elementary algebraic 
techniques are used. We include an Appendix with the elements of homological 
algebra. 

2. The Extension Problem 

Let ~ be a separable complex Hilbert space and ~ the associated pro- 
jective space. The first theorem of Wigner (1959) asserts that 

Aut (5~)  = PFU(S¢ ~) (2.1) 
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or in words: the group of transformations in o~¢t ~ which maintain the 'inter- 
ference' o f  two rays u, v in o,~ : 

l<ulv>l 
u .  v = - -  ( 2 . 2 )  

tlu lilly I1 

where u, v are arbitrary representative vectors in o~,  is called Aut (o@). P U is 
the group of unitary or antiunitary operators in ~ and PI'U is the image of lPU 
in the projective group. 

Wigner's theorem is just the fundamental theorem of projective geometry 
(e.g., Artin (1961)) extended to Hilbert spaces and restricted to the unitary 
part; a demonstration along the lines of  projective geometry can be seen in 
Varadarajan, 1968, Vol. I, p. 167. 

If f# is the 'relativity' group of  the physical system, there must be a 
morphism A: c~ _. Aut (j(~o); in particular, the elementary quantum systems 
are given by the irreducible projective representations of  N ,  as first stated by 
Wigner (1939). As the projective group PFU is I'U/U1, where U 1 = multipli- 
cative group of  unit modulus complex numbers, we resume the situation in 
the diagram with exact row 

f# 
~a 

1 ~ U1 ~ P U ( ~ )  ~ PlPU(~ct ° ) ~ 1 (2.3) 

The relation of the problem of finding A (for a given N ) with some exten- 
sions of N (already recognised in the work of Bargmann (1954) if not  earlier) 
stems from the following simple theorem (Maclane, 1963). 

'The diagram (2.3) can be completed to the diagram 

I ~ U I  ~ H ~ f ~ I  

It o ~, ~. zx (2.4) 

1 ~U1 ~ P U ~ P I ' U ~  1 

which is commutative and with exact upper row; moreover H ( N ,  U1 ) is unique 
up to equivalence of extensions. '  ~r 

Of course, the theorem is valid for any general situation A >~ B ~ > C and 
2~ : D -+ C; for the proof,  one selects in B x D these pairs H = {b, d)  with 
rr(b) = A(d);  then g': (b, d) "+ d is epic H ~> (#, and ker ~ = A ; besides, 
D(b, d) = b makes (2.4) commutative (for the algebraic concepts see 
Appendix). 

As corollary, we obtain: if 1 -+A ~ B  ~ C -+ I splits (i.e., i fB  is a semi- 
direct product)  then A protongates to 

D = o o A : D - ~ B ;  o : C ~ B ;  7 r o o = I d C  (2.5) 

or: any morphism D ~ C 'lifts' to other /3 : D ~ B. 
Thus for any relativity group ~ we have to compute the set Ext ( N ,  U1) of  

inequivalent extensions by UI; in any extension 1 ~ A -+ B ~ C ~ 1 the map- 
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ping b : a -~ bah-1 = a' gives, by quotient, a mapping C -~ Aut A/Int A -- Out A 
(Michel, 1965); for A abelian, as in the physics case, Aut A = Out A, and one 
says that C operates in A; besides, in the extention (2.4) g operates in U 1 
through PPU; but g E P P U  operates in U, either trivially, gz -- z (z E U 1) when 
g comes from a linear operator, or by conjugation gz = z-1 when g is anti- 
linear. Therefore, only consider 

Extc ( g ,  U1) c : ~ -~ Z2 -- Aut U I (2.6) 

In particular, if g is a connected topological group and we restrict ourselves 
to continuous representations, & ( g )  is in tile connected piece of PPU and the 
extensions are central, i.e., g ~ IdAu t u1 .t In the physical case if g is a topo- 
logical group and g o  the (invariant) connected subgroup then W/~  o is 
usually a finite group; the problem for g is the same as for go ,  modulus some 
simple algebraic constructions. 

Therefore taking g 0  connected, the sets 

Exto (@0, U1) (2.7) 

of central extensions gives the classes of projective representations; for any 
extension one has then to calculate the unitary representations in Hilbert 
space, in particular the irreducible ones which imply, as is easily seen, irreduc- 
ibility of the projective representation. The case of finite-dimensional represen- 
tations is disposed of immediately, as the following Lemma states: 

'Any finite-dimensional projective representation of a connected simply 
connected Lie group is induced by a linear representation.' 

This is well known (Weyl, 1950; Bargmann, 1954); we offer a proof: ifn is 
the dimension, then we have the identity 

UI x SUn 
un -- (2.8) 

Zn 

where Zn is the cyclic group of nth roots of 1; (2.8) is obvious. As in the 
neighbourhood of 1 Un ~ U1 x SUn, locally 1 -+ U1 ~ Un -~ SUn "+ 1 is split 
(direct product), and any (close to 1) map ~ -~SUn prolongates to g -~ Un; 
for a simply connected Lie group the globalisation is unique, and the result 
holds. 

If g o  is connected and ~o  ~> g o  is the universal covering, the represen- 
tation problem for go  includes that of go :  one has only to keep those go-  
representa~ons which map Kern = 7 # ( g o )  (which is a central discrete sub- 
group of ~o )  into the U 1 subgroups of U; by Schur's Lemma, this is true in 
particular for any (finite-dimensional) irreducible representation. The existence 
of the map: U n -+ U 1 given by the determinant does not exist for Hilbert 
spaces, and in fact the row of (2.3) is not split. 

If f~ o is a connected  Lie gloup ,  centrali ty of  the  extens ions  comes out  algebraically, 
i.e., any g ~ G¢ is a 'p roduct  o f  squares '  g = g 12922. . . gr  2, and the  square o f  an anti- 
uni tary operator  is unitary.  See Wigner (1959). 

$ This set is the  second cohomology  group of  ~ with values in U 1 ; see Maclane 
(1963),  p. 112, or Michel (1965).  
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In the Hilbert space case the universal covering group of a Lie group is also 
important, due to 1-1 correspondence with analogous problems with Lie 
algebras; in fact, this is a very important part of Bargmann's (1954) work. We 
take his results without comment; the Lie algebra problem is then reduced to 
an easy computational problem in linear algebra; for abelian or semisimple Lie 
algebras Bargmann solves the problem explicitly. 

We just want to proceed in the case in which ff  o is such a Lie group so ~ o 
is a semisimple Lie group; then Bargmann shows that any extension by U1 
splits; the projective problem for the ff o group can be visualised in the 
diagram 

1-.+~ 1 ~  ~ 0  ~ ~ 0 ~ 1  
4. (2.9) 

1 ~ U1 -~ U-+PU-~ 1 

so any morphism ~x_+ Ux, permits the induction of a projective representation 
(~ o "+ PU by quotient; this corresponds to 

Exto ((~ o, UI ) = Horn (rr 1 ((~ o ), Ua ) (2.10) 

already used by Michel (1964) for the Lorentz and Poincar~ groups (in both 
cases, rr 1 = Z2, and Horn (Z2, U1) =- Z2 = character group ofZz = Zz  itself; the 
Lorentz group is simple, and its covering is also simple as a Lie group; the 
covering group of the Poincar~ group is not semisimple, but has also only 
trivial central U a extensions; see Bargmann (1954). 

As another application of (2.10), let us consider the case of the conformal 
group in Minkowski space, P ~ 0(4,  2); this is a simple Lie group (a real non- 
compact form of the A 3 = D3 simple Lie algebra in Caftan classification); the 
maximal compact subgroup is ~ S04  x S02,  and hence the homotopy is ~ Z 
(the covering group has infinite denumerable sheets). As 2 = U1, 

Ext (P, Ua) = Ua (2.11) 

and there exists a nondenumerable set of classes of projective unitary repre- 
sentations (these do not seem to have too much to do with physics; see 
Kastrup (1962) for the reasons why nonunitary representations are the 
pertinent ones). 

3. Galilei Group and Quantum Mechanics 

The Galilei group has nontrivial U1 cohomology, i.e., there are nontrivial 
central extensions of the universal covering group of the Galilei group, as 
determined by Bargmann (1954). The difficulty already appears in the sub- 
group of translations and specific Galilei transformations in the same direc- 
tion, which is isomorphic to the translation group in the plane, R2; in fact, 
Ext o (R 2, U1) = R 1 is immediate from the abelian and simply-connected 
nature of R 2, and also Ext 0 (Galilei, U1) = R 1 (the parameter to fix m E R  1 
gives the mass of nonrelativistic systems). Any extensions of the R 2 group 

1 -> U1 ->Hm -~R 2 -> 1 m E R  1 (3.1) 
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is formed with the following composition law in Ui x R2:  

(Z;p,  ' ' q ) ( Z ; p , q ' ) = ( Z + Z ' + m ( p q ' - q p ' ) ; p + p ' , q + q  ') (3.2) 

where Z E R  1, e lz E Ux. If  one passes to the Lie algebra, and i, P and Q are the 
generators of  U1, R 2, one has 

[Q, P] =im (3.3) 

which are precisely Heisenberg commutation rules for m =/~; this relation 
between the Heisenberg algebra and projective representations of  the R 2 group 
was stressed in 1.927 by Weyl (1950); the relation with the Galilei group comes 
from Bargmann (1954). As yon Neumann (1931) proved that (3.3) has only 
a (class of) faithful irreducible unitary representation (and, as a consequence, 
Heisenberg matrix mechanics and Schr6dinger wave mechanics are equivalent), 
one has essentially only one (Heisenberg) group, but a R 1 manifolds of  
extensions (3.1). We want to show how this paradox is solved: any two groups 
Hm, Hm' for 0 4= m 4=- m '  4 : 0  are isomorphism as abstract groups, but dis- 
equivalent as extensions. 

That this is so comes from the fact that U1 is a divisible group, i.e., y = nx 
for y, x E U1, n C Z has always the solution; therefore the mapping m : x -~ mx  
is an isomorphism between Ua and a quotient group; this prolongates to an 
isomorphism map H m -+ Hm', but as the restriction o f  this to U t is obviously 
not the identity, H m are disequivalent to Hm', as it must be. 

We conclude that the commutation rules fit very naturally with the Galilei 
group, whereas this is not so with the Poincar6 group. In particular, the position 
operator has an invariant meaning only in non-relativistic quantum mechanics, 
namely asa multiple of  the generator of specific Galilei transformations. Whilst 
this can be taken as a clue that Hilbert spaces are not the right frame for rela- 
tivistic theories we leave the reader to judge. 

Appendix  

A morphism g = G -~ G '  is epic if a(G)  = G r, monic if Ker o = e (this is the 
most modern terminology used, e.g. in Ratman, 1970). If Go is an invariant 
subgroup of  G, and G/Go = Q, we write equivalently 1 ~ Go n G -~ Q -+ 1 as 
an exact sequence, i.e., the Kernel of  a map is the image of  the previous one; 
here n monic mad ~r epic mean exactness in Go and Q. A set of  groups and 
morphisms (arrows) is a diagram, in general; is commutative if the image of  a 
point (through existing arrows) does not  depend on the path. 

An extension of  the group C by the group A is an exact sequence E = t -+ 
A -~ B -~ C -+ 1, i.e., B/A = C, but remember that the extension is the set E = 
(B, A, C); two E, E '  are equivalent if there exist a morphism f:  E -+ E '  such 
that its restriction to A is the identity map, and so also is the quotient f =  
Q ~ Q; it follows that f - 1  exists, and in fact f is an equivalence relation. 

Any extension E = (B; A,  C) is determined by two things: first, a morphism 
o:  C ~  0 u t A ,  and a 'factor system' co : C x  C ~ A  whose complete description 
is a bit long; if o(C) = 1, the extension is called central; for some e E Hom (C, 
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Out A )  there are extensions; i f A  is abelian, Out A = Aut A, there are always 
extensions for any a, and they make up an abdian  group, writ ten Ha 2 (G, A) ;  
the unity is the semidirect extension (for a a given), with composi t ion law 
(a, c ) @  (a'c) = (a + a c (a'), cc'). For abelian groups an extension central and 
semidirect is the direct product  or trivial extension, and is unique. 
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